
1 Definition of subgroup parameters

Let’s define the averaging operator for some function f(E) over some energy interval ∆E as follows:

〈f(E)〉∆E =

∫
∆E

f(E)φ(E) dE∫
∆E

φ(E) dE
, (1)

where φ(E) is neutron spectrum. Thus 〈f(E)〉∆E is the average value of function f(E) in ∆E from the
transport equation point of view. In the following the subscript ∆E will be omitted if the energy interval
is clear out of the context.

The theory of subgroup parameters is described in [1], and somewhat more detailed in [2]. The definition
of subgroup parameters begins with the splitting of the energy interval ∆E called group into intervals of
monotonicity of cross section of interaction between neutron and nuclei σ(E) with respect to neutron
energy E. After the splitting integrals in equation (1) for some integrable function f(σ(E)) are replaced
with an integral over the cross section:

〈f(σ(E))〉 =

∞∫
0

f(σ)p(σ) dσ, (2)

where

p(σ) =

∑
i

φ(Ei(σ))
∣∣ dE

dσ

∣∣∫
∆E

φ(E) dE
, (3)

Ei(σ) is the inverse of σ(E) in cross section monotonicity interval i (see fig.1). The sum is calculated over
all intervals.

E

p(σ)dσ

φ(E)σ(E)

σ

σ + dσ

Figure 1: p(σ) is the probability for neutron
scattered into the current group having such
energy E that σ(E) ∈ [σ;σ + dσ]

p(σ) is the probability for neutron to be of such en-
ergy that its cross section is equal to σ under assumption
that its energy is inside ∆E. The subgroup approxima-
tion is based on the expansion of p(σ) into finite series of
δ-functions:

p(σ) =
K∑
k=1

akδ(σ − σk). (4)

It is equalent to approximation of the correspondent prob-
ability function with histogram made of steps of ak height
and of σk width. ak and σk are referred to as subgroup
parameters. The former are referred to as subgroup prob-
abilities1, the latter—as average subgroup cross sections.
ak is considered to be equal to the probability for neutron
to be in subgroup k under assumption that it is in the
correspondent group. However, it is hard to define the
term ”subgroup”. It is tempting to define subgroup as a
set of energy intervals ∆Ek complying with the following

1Also subgroup shares in Russian literature

1



conditions:

ak =

∫
∆Ek

φ(E) dE∫
∆E

φ(E) dE
(5)

σk =

∫
∆Ek

σ(E)φ(E) dE∫
∆Ek

φ(E) dE
, (6)

K⋃
k=1

∆Ek = ∆E, (7)

∆Ek ∩∆En = ∅, k 6= n. (8)

These equations define arranged subgroup parameters, that is, subgroup parameters bijectively mapped
to a set of non-intersecting energy intervals completely covering the group. Unfortunately, the matter of
consistency of equations (5)–(8) as well as the choice of the way to arrange subgroups remains open. In
the following the work with subgroup parameters will be based on equation (4), so there is no need in the
definition of subgroup.

The substitution of (4) into (2) provides the following simple expression to calculate function average
through subgroup parameters:

〈f(σ)〉 =
K∑
k=1

akf(σk). (9)

The function p(σ) may be expanded into series of δ functions with different coefficients. The choice of
the set of coefficients influences on the accuracy of equation (9). Therefore in order to completely define
subgroup parameters, additional criteria have to be provided, e.g. criteria maximizing the accuracy of
some values computed through subgroup parameters. In reactor physics the natural choice of these values
are self-shielded cross sections :

ft,0(z) =

〈
σ
σ+z

〉〈
1

σ+z

〉 , (10)

ft,1(z) =

〈
1

σ+z

〉〈
1

(σ+z)2

〉 − z, (11)

where z is the dilution cross section. Self-shielded cross sections may be expressed through subgroup
parameters by means of equation (9):

f̃t,0(z) =

K∑
k=1

akσk

σk+z

K∑
k=1

ak

σk+z

(12)

f̃t,1(z) =

K∑
k=1

ak

σk+z

K∑
k=1

ak

(σk+z)2

− z. (13)

Let’s define error in y with respect to x as follows:

δ(x, y) =
∣∣∣y
x
− 1
∣∣∣ . (14)
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In other words, if x is some value and y is its approximation computed through subgroup parameters,
δ(x, y) provides a measure for an error in y. The error in function g(z) with respect to function f(z)
(residual) is defined as follows:

δ[f, g] = sup
z∈Z

δ(f(z), g(z)). (15)

In the following a finite set of points will be used as Z:

Z = ZN = {zi, i = 1, . . . , N}. (16)

With the help of residual the additional criteria on subgroup parameters is defined as the problem of
minimization of functions δ[ft,0, f̃t,0] and δ[ft,1, δft,1]. In practice, it is more convinient to set the required
accuracy ε and search for subgroup parameters complying with the following inequalities:{

δ[ft,0, f̃t,0] < ε,

δ[ft,1, f̃t,1] < ε.
(17)

In addition to ak and σk, partial subgroup parameters σx,k are required to compute partial self-shielded
cross sections of reaction x. If the term ”subgroup” is defined via (5)–(8), there parameters can be defined
in the same way as σk:

σx,k =

∫
∆Ek

σx(E)φ(E) dE∫
∆Ek

φ(E) dE
. (18)

However in this work partial subgroup parameters are defined as such σx,k that

δ[fx,0, f̃x,0] < ε, (19)

where

fx,0(z) =

〈
σx

σ+z

〉〈
1

σ+z

〉 , (20)

f̃x,0(z) =

K∑
k=1

akσx,k

σk+z

K∑
k=1

ak

σk+z

. (21)

Despite that the term subgroup was not strictly defined, it still has to be considered. Under assumption
that there exists some partitioning of group energy interval into subgroups, subgroup parameters can be
assigned the physical meaning of the probability for neutron to scatter into the subgroup and average
(total and partial) subgroup cross sections. Under some approximations these subgroup parameters can
be used in existing group programs given that subgroup parameters are put in order and used in place
of group average cross sections. In these cases the following properties of subgroup parameters become
important. They would have these properties if they were defined via the term subgroup.

• Positiveness: ak ≥ 0, σk ≥ 0, σx,k ≥ 0.

• Probability norm compliance:
k∑
k=1

ak = 1.

• Total cross section norm compliance:
K∑
k=1

akσk = 〈σ〉.
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• Partial cross sections norm compliance:
K∑
k=1

akσx,k = 〈σx〉.

• Partial cross sections norm compliance:
∑
x

σx,k = σk.

To conclude, here is the final definition of subgroup parameters:

Definition 1. Subgroup parameters is the set of numbers ak, σk and σx,k, k = 1, . . . , K, x ∈ X , satisfying
the following requirements:

ak ≥ 0, σk ≥ 0, σx,k ≥ 0, ∀k, x, (22)

K∑
k=1

ak = 1, (23)

K∑
k=1

akσk = 〈σ〉 , (24)

K∑
k=1

akσx,k = 〈σx〉 , (25)∑
x∈X

σx,k = σk, (26)

δ[ft,0, f̃t,0] < ε, (27)

δ[ft,1, f̃t,1] < ε, (28)

δ[fx,0, f̃x,0] < ε ∀x ∈ X , (29)

where ft,0, ft,1, fx,0 are self-shielded cross sections (10), (11) and (20), f̃t,0, f̃t,1 and f̃x,0 are self-shielded
cross sections expressed through subgroup parameters (12), (13) and (21), δ[f, g] is the residual (15), ε is
the accuracy required.

2 Computation of subgroup parameters

2.1 The method of Padé approximants

2.1.1 Multipoint Padé approximation

Rational function is the ratio of two polynomes. If numerator polynome is of power M and denomi-
nator polynome is of power N , the rational function is usually denoted with symbol [M/N ] [3]. Padé
approximation is the approximation of some function with rational function. The way to construct Padé
approximation through first few coefficients of Taylor series of the function being approximated computed
in several points is discussed in this section.

Consider inequality (27). Under definitions given in section 1, it is equivalent to the following approx-
imation: 〈

σ
σ+z

〉〈
1

σ+z

〉 ≈
K∑
k=1

akσk

σk+z

K∑
k=1

ak

σk+z

, z ∈ Z. (30)

Obviously, these two ratios are equal when their numerators and denominators are equal (although it’s
better to control the accuracy via (30)). Together with inequalities (28) and (29), it produces the following
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system of equations: 〈
1

σ + z

〉
≈

K∑
k=1

ak
σk + z

, (31)

〈
1

(σ + z)2

〉
≈

K∑
k=1

ak
(σk + z)2

, (32)

〈
σx

σ + z

〉
≈

K∑
k=1

akσx,k
σk + z

, (33)

z ∈ Z.

(the equation for numerators in (30) can be reduced to the first of these equations by adding and subtracting〈
z

σ+z

〉
in the left side and

K∑
k=1

akz
σk+z

in the right side).

Note that in the second equation both sides are derivatives of the correspondent sides of the first
equation. Let

f(z) =

〈
1

σ + z

〉
. (34)

Then the first two approximal equations written above define Padé approximation [(K − 1)/K] for f(z)
by its first two coefficients of Taylor series in points z ∈ Z:

f(z) =

(〈
1

σ + z

〉
+

〈
1

(σ + z)2

〉
(z − zi) +O(z − zi)

)∣∣∣∣
zi∈ZK−1

=
K∑
k=1

ak
σ + z

. (35)

Equations (23) and (24) can be expressed through coeffiecients of f(z) decomposition into series with
negative powers in the neighborhood of zero:

K∑
k=1

ak = 1 =
d

dt
f

(
1

t

)∣∣∣∣
t=0

, (36)

K∑
k=1

akσk = 〈σ〉 = −1

2

d2

dt2
f

(
1

t

)∣∣∣∣
t=0

. (37)

There exist methods to obtain Padé approximation that shares with the function being approximated
coefficients of its decomposition into series with both positive and negative powers. These methods are
considered in detail in [4]. They are based on recursive formulas to add a new point or increase the number
of fixed coefficients of decomposition into series with either positive or negative powers in the existing point.
Considered in this work are Padé approximations sharing with the function being approximated the first
two coefficients of its decomposition into series with negative powers in the neighborhood of zero and the
first two coefficients of its decomposition into series with positive powers in several points. Hence, only
formulas required to obtain such a function will be derived here, in particular formula to add a new point
that takes into account values of both the function and its first derivative, and the formula to compute the
starting Padé approximation that takes into account the first two coefficients in the decomposition into
series with negative powers.

Let

fn(z) ≡ Pn(z)

Qn(z)
= ck,0 + ck,1(z − zk) +O(z − zk), k = 1, . . . n (38)
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—Padé approximation [n/(n+ 1)] with first two coefficients of its decomposition into Taylor series in the
neighborhood of n points zk ∈ Zn being equal to ck,0 and ck,1. Let c−1 and c−2 be the first two coefficients
of its decomposition into series with negative powers in the neighborhood of zero:

fn(z) = c−1z
−1 + c−2z

−2 +O(z−2). (39)

Let fn−1(z) and fn(z) be two Padé approximations such that Zn−1 ⊂ Zn. Then for any α and β

f(z) ≡ (z + α)Pn(z) + β(z − zn)2Pn−1(z)

(z + α)Qn(z) + β(z − zn)2Qn−1(z)
= ck,0 + ck,1(z − zk) +O(z − zk) ∀zk ∈ Zn (40)

and
f(z) = c−1z

−1 + c−2z
−2 +O(z−2), (41)

that is, f(z) is the Padé approximation [(n+ 1)/n] that describes the function being aproximated as well
as fn(z) do. To proof that one can multiply both sides of these equations with the denominator of f(z)
and subtruct them. For equation (40) this results in

(z+α)(Pn(z)−(ck,0+ck,1(z−zk))Qn(z))+β(z−zn)2(Pn−1(z)−(ck,0+ck,1(z−zk))Qn−1(z)) = O(z−zk). (42)

It is true because by the definition of the Padé approximation (38) Pn(z) − (ck,0 + ck,1(z − zk))Qn(z) =
O(z−zk) for all k and Pn−1(z)−(ck,0 +ck,1(z−zk))Qn−1(z) = O(z−zk) for k < n and (z−zn)2 = O(z−zk)
when k = n. Same is for the second equation.

Arbitrary parameters α and β can be picked so that function f(z) and its first derivative in the
neighborhood of zn have the same values as those of function being approximated, that is, f(z) ≡ fn+1(z).
The correspondent equation is:

(z + α)Pn(z) + β(z − zn)2Pn−1(z)

(z + α)Qn(z) + β(z − zn)2Qn−1(z)
= cn+1,0 + cn+1,1(z − zn+1) +O(z − zn+1). (43)

Let z̃ = z − zn+1 and let

Pn(z) =
n∑
k=0

p̃n,kz̃
k, (44)

Qn(z) =
n+1∑
k=0

q̃n,kz̃
k. (45)

Multiplication of both sides of equation (43) with the denominator and subtraction of one from the other
produce the following equations defining the coefficients of the polynome acquired:{

αd00 + βd01 = 0,

αd10 + βd11 = −d00,
(46)

where

d00 = p̃n,0 − cn+1,0q̃n,0,

d01 = (zn+1 − zn)2(p̃n−1,0 − cn+1,0q̃n−1,0),

d10 = p̃n,1 − cn+1,0q̃n,1 − cn+1,1q̃n,0,

d11 = (zn+1 − zn)(2(p̃n−1,0 − cn+1,0q̃n−1,0) + (zn+1 − zn)(p̃n−1,1 − cn+1,0q̃n−1,1 − cn+1,1q̃n−1,0)).
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The solution of this system of equations is

α = − d00d01∣∣∣∣d00 d01

d10 d11

∣∣∣∣ , (47)

β = − d2
00∣∣∣∣d00 d01

d10 d11

∣∣∣∣ . (48)

Let’s find the starting functions f0(z) and f1(z). The zeroeth function has to be of the form

f0(z) =
p0,0

q0,0 + z
(49)

and comply to equations

d

dt
f0

(
1

t

)∣∣∣∣
t=0

= c−1, (50)

1

2

d2

dt2
f0

(
1

t

)∣∣∣∣
t=0

= c−2. (51)

Hence
f0(z) =

c−1

z − c−2

c−1

. (52)

The first function has to be of the form

f1(z) =
p1,0 + p1,1z

q1,0 + q1,1z + z2
(53)

and comply to two additional equations:

f1(z0) = c0,0 (54)

d

dz
f1(z)

∣∣∣∣
z=z0

= c0,1. (55)

The solution of the corresponding system of equations with respect to Padé approximation coefficients
produces the following result:

f1(z) =
c0,0(c2

−1 + c0,0c−2) + c−1(c2
0,0 + c−1c0,1)(z − z0)

c2
−1 + c0,0c−2 + (c0,0c−1 − c0,1c−2)(z − z0) + (c2

0,0 + c−1c0,1)(z − z0)2
. (56)

2.1.2 Computation of subgroup parameters

Given Padé aproximation f(z) such that (35)–(37) hold, subgroup parameters ak and σk can be computed
from its polar form:

f(z) ≡

K−1∑
k=0

pkz
k

K∑
k=0

qkzk
≡

K∑
k=1

ak
σk + z

. (57)
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From this equivalence it follows that −σk are roots of polynome
K∑
k=0

qkz
k, and ak are the solution of the

system of linear equations
K∑
n=1

rn,kak = pk, k = 1, . . . , K, , (58)

where

rn,k−1 = qk−1 + znqk,

rn,K = qK .

Given subgroup parameters ak and σk, partial subgroup parameters σx,k can be obtained from the
system of linear equations (33) with z running across the set of dilution cross sections used during compu-
tation of ak and σk, i.e. z ∈ ZK−1. To make the system complete, partial cross section norm (25) also has
to be considered. However, one can use the linearity of equation (33) and derive relatively simple equations
for σx,k by means of least-squares method. This case is also more convenient to take equations (26) into
account.

Here are the equations referred to in the previous paragraph:

K∑
k=1

akσx,k
σk + z

=

〈
σx

σ + z

〉
, z ∈ Z, (33)

K∑
k=1

akσx,k = 〈σx〉 , x ∈ X , , (25)∑
x∈X

σx,k = σk, k = 1, . . . , K. (26)

Let m be some whole number between 1 and K (inclusive). From (25), σx,m can be expressed as follows:

σx,m =
1

am

(
〈σx〉 −

∑
k 6=m

akσx,k

)
. (59)

Let u be some reaction in X . Then
σu,k = σk −

∑
x 6=u

σx,k (60)

The system of equations {(25), (26)} is linearly dependent under assumption that
K∑
k=1

akσk = 〈σ〉 =∑
x∈X
〈σx〉. Hence both expressions for σu,m are equivalent.

As it is usual for the least squares method, let residual be

δ2 =
∑
z∈Z

∑
x∈X

(
K∑
k=1

akσx,k
σk + z

−
〈

σx
σ + z

〉)2

. (61)

The exlusion of σx,m and σu,k leads to

δ2 =
∑
z

∑
x 6=u

(∑
k 6=m

akσx,k

(
1

σk + z
− 1

σm + z

)
+
〈σx〉
σm + z

−
〈

σx
σ + z

〉)2

+

+

(∑
x 6=u

∑
k 6=m

akσx,k

(
1

σk + z
− 1

σm + z

)
+

〈
σ

σ + z

〉
−
〈

σx
σ + z

〉
+
〈σu〉 − 〈σ〉
σm + z

)2
 . (62)
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Having set partial derivatives of the residual with respect to σv,n equal to zero and having made simple
transformation, the following system of equations is obtained:

∑
x 6=u

(1 + δx,v)
∑
k 6=m

akσx,k
∑
z

(
1

σk + z
− 1

σm + z

)(
1

σn + z
− 1

σm + z

)
=

=
∑
z

(〈
σ

σ + z

〉
−
〈

σu
σ + z

〉
+

〈
σv

σ + z

〉
− 〈σ〉 − 〈σu〉+ 〈σv〉

σm + z

)(
1

σn + z
− 1

σm + z

)
,

n = 1, . . . ,m− 1,m+ 1, . . . , K, v ∈ X − {u}, (63)

where δx,v is the Kronecker symbol, it is equal to one if x = v, otherwise it is equal to zero. σx,k are
obtained by solving that system.

Obviously, subgroup parameters computed by means of the method described depend on the choice of
the set of dilution cross sections ZK−1 used in (35). Let’s call these cross sections fitting dilution cross
sections. It could be undesirable to use as fitting dilution cross sections all points the accuracy of subgroup
approximation is checked in. Indeed, the number of subgroups obtained via this method is one more than
the number of fitting dilution cross sections, while it is possible to use only one subgroup to describe non-
resonant group with almost perfect accuracy. Hence the matter of choice of fitting dilution cross sections.
In order to solve it let’s consider some properties of Padé approximants.

Padé approximation of continuous function constructed with respect to several points, perhaps with
regard to function derivatives, possess interpolation properties. That is, it allows one to compute approx-
imate value of the function being approximated in between fitting points as long as it does not have a
pole between these points. For dilution cross sections, the interval [0;∞) is of interest; there won’t be any
poles in it if all roots of the polynome in the denominator of Padé approximation (57) are negative, i.e. if
σk > 0.

As well as any other smooth interpolating function, Padé approximation may dramatically differ from
the function being approximated if the latter has some properties badly described by rational approxi-
mation and/or the fitting points were chosed poorly. In the case of Padé approximation it results in the
appearance of poles between fitting points. The pole may also appear in the case when the function,
conversely, well agrees with the rational approximation. It happens when the addition of the next fitting
point results in the construction of approximation in the form of (Az+B)PN (z)

(A′z+B′)QM (z)
, where A and A′ and B

and B′ marginally differ from each other. Due to this small difference binomials do not reduce, and the
approximation get a so-called ”noise doublet”, a pole and a zero close to each other: the approximation
equals to zero when z = −B/A and to infinity when z = −B′/A′. The appearance of the noise doublet
is characterized by small values of ak in subgroup parameters. The source of noise doublets are, among
other things, computational errors, so it is rather hard to struggle with them.

The properties of Padé approximants are described in further details in [4, ch. 5]. The algorithm used
to find the most optimal fitting dilution cross sections is also presented there, but for completeness, it will
also be discussed here.

The search for most optimal fitting dilution cross sections starts with the choice of K − 1 cross section
from the set of dilution cross sections Z (16). Let’s designate the set of these cross sections with Z̃. Z̃ is
sorted with some order and one of the cross sections in it is varied, for instance the first one. Being varied,
the cross section takes all the values from Z except those present in Z̃, and for every value the residual is
calculated:

δ = max
z∈Z
x∈X

(δ[ft,0, f̃t,0], δ[ft,1, f̃t,1], δ[fx,0, f̃x,0]). (64)

When the variation is finished, the value corresponding to the smallest residual is written into the end of
Z̃, the varied first element is dumped and the whole procedure is repeated from start. The algorithm ends
if either such Z̃ was found that the correspondend residual is small enough, or the set Z̃ did not change
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after all its elements had been varied. In the latter case one can to increase K by one and try again, until
either the satisfactory solution is found or K becomes equal to the number of elements in Z.

A few important properties of the algorithm should be mentioned. First, the algorithm provides
no guarantees to find the global minimum of the residual, only some local one. Second, the algorithm
assumes the unicity of the Padé approximation constructed with respect to several points. While it is
true in theory, in practice computational errors can influence on the construction dramatically, up to
appearance of positive poles dependent on the order of choice of fitting points. Third, it can happen that
the residual for total cross section is satisfactory small, while it is not true for the residual for partial cross
sections. With ε being small, the addition of another fitting point may result in appearance of the noise
doublet.

In spite of all its shortcomings, the algorithm provides adequate compromise between calculation speed
and the quality of the result obtained.

2.2 Residual minimization2

The problem of finding subgroup parameters satisfying conditions (22)–(29) can be considered as the
problem of finding the minimum of multidimensional function. In this case the function is the residual:

δ = max
z∈Z
x∈X

(δ[ft,0, f̃t,0], δ[ft,1, f̃t,1], δ[fx,0, f̃x,0]). (64)

Its arguments are subgroup parameters ak, σk and σx,k. The feasible space is constrained with equa-
tions (22)–(26):

ak ≥ 0, σk ≥ 0, σx,k ≥ 0, ∀k, x, (22)

K∑
k=1

ak = 1, (23)

K∑
k=1

akσk = 〈σ〉 , (24)

K∑
k=1

akσx,k = 〈σx〉 , (25)∑
x

σx,k = σk, (26)

For convenience, let sk = akσk

〈σ〉 , sx,k =
akσx,k

〈σx〉 . For some m : 1 ≤ m ≤ k

am = 1−
∑
k 6=m

ak,

sm = 1−
∑
k 6=m

sk,

sx,m = 1−
∑
k 6=m

sx,k.

(65)

2 Unfortunately, when I was working on this subject I lacked the knowledge of constrained multidimensional minimization
methods, so the following is a rather naive theory. It is included here for completeness because it is implemented in
the subgroups program.
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Left sides of these equations have to be positive, hence the following system of inequalities:

ak ≥ 0,∑
k 6=m

ak ≤ 1,

sk ≥ 0,∑
k 6=m

sk ≤ 1,

sx,k ≥ 0,∑
k 6=m

sx,k ≤ 1.

(66)

In n-dimensional space inequalities 
xk ≥ 0, k = 1, . . . , n,

n∑
k=1

xk ≤ 1
(67)

define standard simplex—a multidimensional rectangular triangle with sides coincident with orths. Con-
sequently, if N is the number of partial cross sections, the solution has to be inside the (K − 1) · (N + 2)-
dimensional body which is the direct sum of N+2 K−1-dimensional standard simplexes. Constraints (22)–
(25) are taken into account by bijective mapping of this body into the whole space of the same dimension
and solving the minimization problem in this space. Since the body is the direct sum of standard sim-
plexes, in order to construct bijective mapping it is enough to construct bijective mapping of one simplex
to the whole space of the same dimension and apply it to every simplex.

Given bijective mapping T (x, a) : [0; a]→ [−∞;∞] for some a > 0, bijective mapping of the standard
simplex can be constructed as follows. Consider the line parallel to axis number m and passing through a
point ~x. The simplex cuts an interval such that its end points coordinates are

(x1, . . . , xm−1, 0, xm+1, . . . , xn) and (x1, . . . , xm−1, 1−
n∑
k=1
k 6=m

xk, xm+1, . . . , xn).

The desired mapping is the application of T to every such interval for every point ~x inside the simplex
and every axis m. Coordinates of the mapped point are:

ξm = T (xm, 1−
n∑
k=1
k 6=m

xk), m = 1, . . . , n. (68)

As for the mapping T , it can be, for instance, cotangent:

T (x, a) = cot
πx

a
. (69)

Then the coordinates of the mapped point are

ξm = cot
πxm

1−
n∑
k=1
k 6=m

xk

, m = 1, . . . , n, (70)
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and the inverse of T is obtained by solving the system of linear equations

n∑
k=1
k 6=m

xk +
π

acotξm
xm = 1, m = 1, . . . , n. (71)
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